Pulse counters Project for PR200-24.2

Project overview

The example explains the use of different pulse counters. The project contains 1 data processing block and 1 screen.

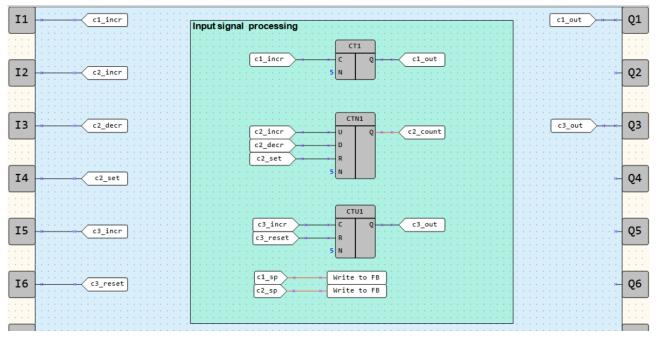


Fig. 1. Program workspace

Data processing block:

• Input signal processing

Name	Туре	Description
11	BOOL	1st counter / incremental count (count up)
<i>I2</i>	BOOL	2nd counter / incremental count (count up)
<i>I3</i>	BOOL	2nd counter / decremental count (count down)
I4	BOOL	2nd counter / reset
<i>I5</i>	BOOL	3rd counter / incremental count (count up)
<i>I6</i>	BOOL	3rd counter / reset
Q1	BOOL	1st output
Q3	BOOL	3rd output

Table 1. Device inputs/outputs

Table 2. Project variables

Name	Туре	Description
c1_incr	BOOL	1st counter / incremental count (count up)
c1_sp	INT	1st counter / setpoint
c1_out	BOOL	1st counter / output

c2_incr	BOOL	2nd counter / incremental count (count up)
c2_decr	BOOL	2nd counter / decremental count (count down)
c2_sp	INT	2nd counter / setpoint
c2_set	BOOL	2nd counter / set to setpoint
c2_count	INT	2nd counter / count result
c3_incr	BOOL	3rd counter / incremental count (count up)
c3_reset	BOOL	3rd counter / reset to zero
c3_out	BOOL	3st counter / output

There are three types of counters used in the project:

- CT threshold counter with self-reset
- CTN universal counter
- CTU threshold counter

The CT counter (Fig. 2) counts the pulses until the counted value is equal to setpoint N specified in the Property Box. The output Q is then set to *TRUE*, the counter is reset and starts counting from zero.

											ł			1									ł		
-	[c 1	 ln	cr	•	\geq	Ļ	÷			*	C	Q		÷	*	⊰	(c	1	_0	u	t]	-
		:								Ì	5	N		Ľ	1	i	1	:	:	:	:	Ì	ì	;	÷

Fig. 2. CT counter

The CTN counter (Fig. 3) provides counting in both positive and negative directions. The setpoint N is also specified in the Property Box, but the output Q returns the number of counted pulses.

If the variable $c2_set = TRUE$ is applied to the input *R*, the counter output value *Q* becomes equal to the setpoint value on the input *N*. This feature is required to use countdown or count up from a fixed value.

ł		СТМ	11		-			 ł			
	c2_incr	U	Q	×	×	\langle	c2	 oui	nt]	
	c2_decr	D						 -			
-	c2_set	R						 ÷			
-		N			-			 ł	ł		

Fig. 3. CTN counter

The CTU counter counts pulses up to the setpoint on the input N, then the output Q becomes TRUE and remains until TRUE is received on the input R and the counting starts from zero.

		СТU1	
-	c3_incr	C Q	
	c3_reset	R	
	5	N]

Fig. 4. CTU counter

For the *CT* and **CTN** counters, the setpoint can also be set via *WriteToFB* blocks, i.e. via variables which, for instance, can be written using the display and the function buttons.

•	c1_sp	Write to FB	
	c2_sp	Write to FB	

Fig. 5. Write setpoints to counters

Screen

Table 3. Function buttons

Function buttons	Action
$\overline{\mathbf{a}}$	Scroll down through screen rows
	Scroll up through screen rows

The first screen row shows the number of counted pulses of the 2^{nd} counter (*CTN*). The 2^{nd} and 3^{rd} rows show the setpoints for the 1^{st} and the 2^{nd} counter respectively.

Initially the first two rows of the first screen are displayed (Fig. 6).

С	2	Ρ	U	L	S	Е	S	:		0	0	0	
С	2	S	Ρ	•						0	0	0	
С	3	S	Ρ	:						0	0	0	

Fig. 6. Screen